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Abstract

Two simple dynamic systems with cubic nonlinearity and additive Gaussian white noise are used to assess the

performance and the usefulness of closure methods in nonlinear random vibration. One of the systems has a single

potential well while the other has two potential wells. It is shown that the performance of closure methods is determined by

the structure of the moment equations rather than the way in which these equations are closed. For the system with one

potential well, any closure method is satisfactory. For the system with two potential wells, closure methods can be

inaccurate irrespective of the closure level. It is also shown that moment equations can be augmented with moment

inequalities to solve approximately the infinite hierarchy of moment equations.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a dynamic system with state X driven by Gaussian white noise. The probability law of X is
available analytically in few cases of limited practical interest. Monte Carlo estimates of the law of X are
always possible but are likely to be impractical in realistic applications since the computation time required to
generate samples of X can be excessive. Because of limitations of analytical and Monte Carlo solutions,
perturbation, equivalent linearization, stochastic averaging, closure, and other approximate methods are
commonly used in applications to calculate statistics of X [1, Section 7.3.1.5].

Closure methods involve two steps. First, equations are constructed for the moments of X . We note that
moment equations exist if the nonlinear terms in the defining equation of X are polynomials of the system
state. Second, a finite number qX1 of equations, referred to as closure level, is selected from the infinite
hierarchy of moment equations. Since the number of unknown moments of X in the selected moment
equations exceeds q, it is not possible to find the moments of X exactly [2,3]. Closure methods postulate
relationships between some of the moments of X that, together with the moment equations, provide the
needed number of equalities to calculate the unknown moments of X in the moment equations up to a selected
closure level [1, Section 7.3.1.5].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The state X ðtÞ of the dynamic systems considered in our discussion is the solution of the stochastic
differential equation

dX ðtÞ ¼ ðaX ðtÞ þ bX ðtÞ3Þdtþ sdBðtÞ; tX0, (1)

where a 2 R, bo0, s 2 R, and B denotes a standard Brownian motion process. We consider only the
stationary solution of Eq. (1). Since �X is a solution if X is a solution, the equality X ðtÞ ¼

d
�X ðtÞ holds in

distribution at any time t, so that the density of X ðtÞ is an even function. Accordingly, we need to calculate
only the even order moments of X ðtÞ since the odd order moments of the system state are 0. We also note that
the dynamic system in Eq. (1) has a single potential well for ao0 and two potential wells for a40.

Our objective is to assess the performance and usefulness of closure methods in random vibration, and use
Eq. (1) to achieve this objective. The paper extends results in Ref. [4] established for systems with a single
potential well, that is ao0 in Eq. (1). We present an elementary proof of the main result in Ref. [4], which
states that, if ao0, there exists a unique value of the stationary second moment E½X ðtÞ2� of X such that all
moments E½X ðtÞ2k

�, k ¼ 2; 4; . . . , are positive, this unique value of E½X ðtÞ2� is the exact value of the second
moment of the system state, and any closure method provides satisfactory approximations for the moments of
X ðtÞ if based on a sufficiently large closure level. This result is used to construct a sequence of intervals that
decreases with the closure level and contains the exact value of E½X ðtÞ2�.

If a40, that is, the system in Eq. (1) has two potential wells, the moment equations provide no constraint on
the possible values of E½X ðtÞ2� regardless of the closure level. Any E½X ðtÞ2�40 delivers positive moments
E½X ðtÞ2k

�, k ¼ 2; 4; . . . , so that it is an acceptable solution. Closure methods can be unsatisfactory in this case.
It is also shown that moment inequalities can be used in conjunction with moment equations to construct a
sequence of bounded intervals in ð0;1Þ that contain the exact value of the second moment of X ðtÞ.

The results in the paper show that the performance of closure methods is determined by the structure of the
moment equations rather than the way in which the infinite hierarchy of moment equations is closed, that is,
the particular closure method used for solution. This finding is of great concern in applications since it is not
possible to assess the performance of a particular closure method without extensive calculations, for example,
large-scale Monte Carlo simulations, in which case closure methods may not be needed.

2. Properties of X

The Fokker–Planck equation,

qf ðx; tÞ

qt
¼ �

q
qx
ððaxþ bx3Þf ðx; tÞÞ þ

s2

2

q2f ðx; tÞ

qx2
, (2)

can be used to calculate the marginal density f ðx; tÞ of X ðtÞ in Eq. (1) at any time t [5]. Since the process X ðtÞ

approaches stationarity as time increases indefinitely, its marginal density becomes time-invariant, that is,
limt!1f ðx; tÞ ¼ f ðxÞ, so that Eq. (2) degenerates into an ordinary differential equations with solution

f ðxÞ ¼ c exp
1

s2
ðax2 þ

1

2
bx4Þ

� �
; x 2 R, (3)

where c40 denotes a normalizing constant. Moments of any order p of the stationary solution X ðtÞ of Eq. (1)
can be calculated from

mp ¼

Z
R

xpf ðxÞdx; p ¼ 1; 2; . . . , (4)

by numerical integration. Since f ðxÞ ¼ f ð�xÞ, x 2 R, is an even function, the odd order moments of X ðtÞ

vanish, so that we need to consider only even order moments.
If a;bo0, the stationary density f ðxÞ in Eq. (3) has a single mode centered at x ¼ 0. If a40 and bo0, then

f ðxÞ has two modes located at x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�a=b

p
corresponding to the two wells of the potential of the dynamic

system described by Eq. (1). Since the stationary density f ðxÞ exhibits a qualitative change at a ¼ 0, we say that
it undergoes a transition [1, Section 9.4.3, 6, Section 6.3, 7]. The bifurcation point a ¼ 0 separates most likely

value of X centered at x ¼ 0 for ao0 from those centered at x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�a=b

p
for a40. We note that stationary
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moments of X cannot capture the transition of f ðxÞ at a ¼ 0 since they smear motion details associated with
jumps between potential wells [6, Section 6.4, 7]. It is suggested that this limitation of the stationary moments
of X causes failure of the closure method for a40.

3. Moment equations

Let mðp; tÞ ¼ E½X ðtÞp� denote the moment of order p ¼ 1; 2; . . . of X ðtÞ at an arbitrary time t. Itô’s formula
applied to the mapping X ðtÞ7!X ðtÞp gives

X ðtÞp � X ð0Þp ¼

Z t

0

pX ðtÞp�1 dX ðtÞ þ
s2

2

Z t

0

pðp� 1ÞX ðtÞp�2 d½B;B�ðtÞ, (5)

where ½B;B�ðtÞ denotes the quadratic covariation process of BðtÞ [1, Section 7.3.1.1, 8, Sections 4.1 and 4.2].
The expectation of Eq. (5) followed by differentiation with respect to time gives

_mðt; pÞ ¼ pamðt; pÞ þ pbmðt; pþ 2Þ þ
pðp� 1Þs2

2
mðt; p� 2Þ; p ¼ 1; 2; . . . , (6)

with the convention mðt; pÞ ¼ 0 for po0. Let mp ¼ limt!1mðt; pÞ denote the stationary moment of order p of X .
Since the moments of X are time-invariant during the stationary regime, Eq. (6) yields

pamp þ pbmpþ2 þ
pðp� 1Þs2

2
mp�2 ¼ 0; p ¼ 1; 2; . . . , (7)

in the limit as t!1.
The odd order moments of X are 0, so that they satisfy Eq. (7) identically. The even order moments must

satisfy the conditions

2kam2k þ 2kbm2ðkþ1Þ þ
2kð2k � 1Þs2

2
m2ðk�1Þ ¼ 0; k ¼ 1; 2; . . . , (8)

giving the recurrence formulas

m2ðkþ1Þ ¼ am2k þ ð2k � 1Þbm2ðk�1Þ; k ¼ 1; 2; . . . , (9)

where a ¼ �a=b and b ¼ �s2=ð2bÞ. These equations are

m4 ¼ am2 þ b,

m6 ¼ am4 þ 3bm2,

m8 ¼ am6 þ 5bm4, (10)

for k ¼ 1; 2; 3 and m240, so that

m4 ¼ am2 þ b,

m6 ¼ ða
2 þ 3bÞm2 þ ab,

m8 ¼ ða
3 þ 8abÞm2 þ a2bþ 5b2, (11)

showing that all even order moments of X depend linearly on m2.

3.1. Closure methods

If the system in Eq. (1) is linear, that is, b ¼ 0, then Eq. (7) becomes

pamp þ
pðp� 1Þs2

2
mp�2 ¼ 0; p ¼ 1; 2; . . . , (12)
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so that the moments of X ðtÞ can be calculated recursively since m0 ¼ 1. If bo0, the moments of X ðtÞ satisfy
Eq. (9), and its solution requires knowledge of both m0 and m2. Since m2 is not known, it is not possible to
calculate the moments of X ðtÞ exactly.

Closure methods extract a finite set of equalities from Eq. (9) and provide an additional relationship
between some of the moments of X ðtÞ. Consider the first q equalities in Eq. (9), that is, the equalities in this
equation for k ¼ 1; . . . ; q, where qX1 is an integer referred to as closure level. The resulting system of q

equations has qþ 1 unknowns, the moments m2; . . . ;m2ðqþ1Þ, so that it cannot be solved. For example, at
closure level q ¼ 1, the system of moment equations is m4 ¼ am2 þ b, a single equation with two unknowns, the
moments m2 and m4. An additional relationship between m2 and m4 is needed for solution, and this relationship
is provided by closure methods.

For example, according to the Gaussian closure method applied at a closure level q, the moments m2q and
m2ðqþ1Þ relate in the same way as the corresponding moments of Gaussian random variables [2]. Let G�Nð0; gÞ
be a Gaussian variable with mean 0 and variance g. Since the moments of G of order 2r, r ¼ 1; 2; . . . , are

E½X 2r� ¼
ð2rÞ!gr

2rr!
, (13)

we have

E½X 2ðrþ1Þ� ¼ ð2rþ 1ÞgE½X 2r�. (14)

Under the assumption that the relationship between m2q and m2ðqþ1Þ matches that in Eq. (14), that is,
m2ðqþ1Þ ¼ ð2qþ 1Þgm2q ¼ ð2qþ 1Þm2m2q, it is possible to solve the system of q moment equations and find
approximate values for the moments m2; . . . ;m2ðqþ1Þ of X ðtÞ. If q ¼ 1, we have m4 ¼ 3gm2 ¼ 3m22, so that, at this
closure level, m2 is the solution of

3m22 ¼ am2 þ b. (15)

The positive roots of Eq. (15) are m2 ¼ 0:2743 for ða ¼ �1; b ¼ �1;s ¼ 1Þ and m2 ¼ 0:6076 for
ða ¼ 1;b ¼ �1; s ¼ 1Þ. The errors of the approximate second-order moments of X ðtÞ are �5 and �32
percent, respectively. As it will be shown in the following sections, moment closure solutions improve with q

for the system with a single potential well but may not improve or yield negative even order moments for the
systems with two potential wells.
3.2. Range of m2

Let

Ik ¼ fm240 : m2ðkþ1Þ40g; k ¼ 1; 2; . . . (16)

denote the range of m2 in ð0;1Þ such that the moment m2ðkþ1Þ is positive. Then the interval I ðqÞ ¼
Tq

k¼1Ik

contains the values of m2 such that the moments m2ðkþ1Þ, k ¼ 1; . . . ; q, entering the moment equations up to a
closure level q are positive. It is shown that the intervals I ðqÞ decrease with q and are q-invariant for ao0 and
a40, respectively. In the latter case, the moment equations only tell us that m2 must be positive, so that they
provide no information on the range of values of m2.
3.2.1. Case 1: ao0
Let a ¼ �1, b ¼ �1, and s ¼ 1. Fig. 1 shows the dependence of moments m2k, k ¼ 2; . . . ; 6, on m2 in the

range ð0:1; 0:5Þ. The horizontal heavy segment in the figure is the interval I ð6Þ ¼ ð0:257; 0:3Þ. As expected, the
exact solution m2 ¼ 0:2896 is included in I ð6Þ.

The intervals Ik are I1 ¼ ð0:0; 0:5Þ, I2 ¼ ð0:2;1Þ, I3 ¼ ð0:0; 0:35Þ, I4 ¼ ð0:25;1Þ, I5 ¼ ð0:0; 0:3Þ, and
I6 ¼ ð0:257;1Þ, for k ¼ 1, 2, 3, 4, 5, and 6, respectively. The corresponding intervals I ðqÞ are I ð1Þ ¼ ð0:0; 0:5Þ,
I ð2Þ ¼ ð0:2; 0:5Þ, I ð3Þ ¼ ð0:2; 0:35Þ, I ð4Þ ¼ ð0:2; 0:35Þ, I ð5Þ ¼ ð0:2; 0:3Þ, and I ð6Þ ¼ ð0:257; 0:3Þ, and form a
decreasing sequence. According to results in Ref. [4], the decreasing sequence of intervals fI ðqÞg has a unique
limit, and this limit is the exact value of m2. Moreover, the sequence fm2ðqÞg, q ¼ 1; 2; . . . , of approximate
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Fig. 1. Relationship between m2k, k ¼ 2; . . . ; 7 and m2 for a ¼ �1, b ¼ �1, and s ¼ 1. The horizontal heavy segment marks the

interval I ð6Þ.
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values of m2 corresponding to increasing closure levels also converge to the exact value of m2, that is,
limq!1m2ðqÞ ¼ m2, irrespective of the particular closure method used for calculations.

That the last statement holds results from Fig. 1. Consider the system of moment equations at a closure level
q and an arbitrary closure condition m2ðqþ1Þ ¼ zm2q, z40, relating the two highest-order moments. We now
have qþ 1 unknowns and as many equations so that the moments m2; . . . ;m2ðqþ1Þ of X ðtÞ can be calculated. For
q ¼ 1, we have m4 ¼ �m2 þ

1
2 and m4 ¼ zm2, so that m2 ¼ ð

1
2Þ=ðzþ 1Þ 2 I ð1Þ. Similarly, at closure level q ¼ 2, we

have m6 ¼ ð
5
2
Þm2 �

1
2
and m6 ¼ zm4 ¼ �zm2 þ z=2, so that m2 ¼ ðzþ 1Þ=ð2zþ 5Þ 2 I ð2Þ, and so on. This shows

that, for any z40, that is, any closure method, the approximate value of m2 belongs to I ðqÞ at each closure level
q ¼ 1; 2; . . . , and since limq!1I ðqÞ ¼ fm2g, any closure methods is asymptotically correct as q!1; it does not
matter how the moment equations are closed. If the closure level is sufficiently high, any closure methods
provides satisfactory approximations for the moments of X ðtÞ. Claims that a closure method is superior to
another are unfounded. The success of closure methods relates solely to the structure of the moment
equations.

3.2.2. Case 2: a40
Let a ¼ 1, b ¼ �1, and s ¼ 1. Fig. 2 shows the variation of the moments m2k, k ¼ 2; . . . ; 6, with m2 in the

range ð0:0; 0:5Þ. The moments have been calculated from Eq. (9) sequentially. The plots show that any m240
delivers positive moments m2k, k ¼ 2; . . . ; 6, so that it is an acceptable solution at closure level q ¼ 6.

It was shown that, if ao0, the sequence of intervals fI ðqÞg, q ¼ 1; 2; . . . , decreases with q and approaches the
exact values of the second moment of X ðtÞ, that is, limq!1I ðqÞ ¼ fm2g. In the case a40 considered here all
intervals Ik are equal to ð0;1Þ since the coefficients a ¼ �a=b ¼ 1 and b ¼ �s2=ð2bÞ ¼ 1

2
are positive, so that

the moments of order 4 and higher of X ðtÞ are positive for m240. Accordingly, we have I ðqÞ ¼ ð0;1Þ for all
closure levels q. The moment equations provide no useful information; they only tell us that any m240 is a
feasible solution.

The performance of closure methods applied to the dynamic systems with ao0 and a40 differ significantly.
We have seen that for ao0 any closure method is asymptotically correct as q!1. In the case a40 the
situation is quite different. Consider as previously an arbitrary closure method postulating the relationship
m2ðqþ1Þ ¼ zm2q for some z40. At closure level q ¼ 1, we have m4 ¼ m2 þ

1
2
and m4 ¼ zm2, so that m2 ¼

ð1
2
Þ=ðz� 1Þ 2 I ð1Þ ¼ ð0;1Þ for z 2 ð0; 1Þ. There is no solution for z41, in the sense that the resulting value

of m2 is negative. At closure level q ¼ 2, we have m6 ¼ ð
5
2
Þm2 þ

1
2
and m6 ¼ zm4 ¼ zm2 þ z=2 so that m2 ¼

ð1� zÞ=ð2z� 5Þ 2 I ð2Þ ¼ ð0;1Þ for z 2 ð1; 5
2
Þ. There is no solution forz 2 ð1; 5

2
Þ
c, in the sense that the resulting

value of m2 is negative.
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Fig. 2. Relationship between m2k, k ¼ 2; . . . ; 7 and m2 for a ¼ 1, b ¼ �1, and s ¼ 1.
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Since (1) the approximate value of m2 is sensitive to the value of z, that is, the particular closure method
considered for solution, (2) the selection of z is based on heuristic arguments, and it is not possible to identify
an optimal value for this parameter, (3) moments of order 4 and higher of X ðtÞ depend strongly on the value of
m2 (Fig. 2), and (4) resulting approximations of m2 are negative for some values of z, that is, for some closure
methods, we conclude that, if a40, closure methods are unsatisfactory. The performance of closure methods
in this case is markedly different from that for ao0, and shows that the performance of closure methods is
determined by the structure of the moment equations rather than the closure technique. This is a serious
limitation since it is not possible to assess the accuracy of a particular closure method for a particular dynamic
system without, for example, extensive Monte Carlo simulations, in which case the use of closure methods will
not be justified.
4. Moment inequalities

Let Y and Z be two real-valued random variables with finite variance. According to the Cauchy–Schwarz
inequality, we have jE½YZ�jpðE½Y 2�E½Z2�Þ

1=2. This inequality applied to the even powers of the stationary
solution X ðtÞ of Eq. (1) gives

E½X ðtÞ2r
� ¼ E½X ðtÞ2r�pX ðtÞp�pðE½X ðtÞ2ð2r�pÞ

�E½X ðtÞ2p
�Þ
1=2 (17)

or

m2rpðm2ð2r�pÞm2pÞ
1=2. (18)

The inequalities in Eq. (18) provide distinct conditions only for p ¼ 0; 1; . . . ; k � 1 because of their symmetry.
These conditions are

r ¼ 1 : m2pm1=24 ;

r ¼ 2 : m4pm1=28 ; m4pðm6m2Þ
1=2;

r ¼ 3 : m6pm1=212 ; m6pðm10m2Þ
1=2; m6pm8m4Þ

1=2;

r ¼ 4 : m8pm1=216 ; m8pðm14m2Þ
1=2; m8pðm12m4Þ

1=2; m8pðm10m6Þ
1=2; (19)

for r ¼ 1; . . . ; 4.
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4.1. Range of m2

The inequalities in Eq. (18) provide additional constraints on the moments of X ðtÞ that, together with the
moment equations, can be used to construct tighter bounds on the possible values of m2. Let

Jk ¼ fm240 : m2ðkþ1Þ40 and inequalities in Eq: ð9Þg; k ¼ 1; 2; . . . (20)

denote the range of m2 in ð0;1Þ such that m2ðkþ1Þ is positive and satisfies the appropriate conditions in Eq. (19).
For example, the inequality constraint for J1 is m2pm1=24 . Since Jk includes all constraints in the definition of
Ik, we have Jk � Ik. Let J ðqÞ ¼

Tq
k¼1Jk be the interval containing m240 with the property that the higher-

order moments of X ðtÞ in the equations up to closure level q are positive and satisfy inequalities of the type in
Eq. (19). Since Jk � Ik, we have JðqÞ � I ðqÞ.

The construction of the intervals Jk and J ðqÞ involves two steps. First, Eq. (9) is used to express the
moments of X ðtÞ of order 4 and higher in the moment equations up to closure level q in terms of m2.
Second, the resulting moments are introduced in Eq. (18) to obtain additional constraints on the possible
values of m2.

4.1.1. Case 1: ao0
We have seen that the moment equations deliver intervals I ðqÞ, q ¼ 1; 2; . . . , containing values of m2 for

which the moments of order 4; . . . ; 2ðqþ 1Þ of X ðtÞ are positive. The intervals fI ðqÞg constitute a decreasing
sequence converging to the unique solution m2 of the moment equations. It was also found that I ð6Þ ¼

ð0:257; 0:3Þ for a ¼ �1, b ¼ �1, and s ¼ 1, that is, if m2 2 I ð6Þ, the moments of X ðtÞ up to order 14 calculated
from Eq. (10) are positive.

The intervals Jk obtained from the moment equations and the first, second, third, and fourth inequalities in
Eq. (19) are ð0:0; 0:3660Þ, ð0:2745; 0:3450Þ, ð0:2615; 0:2945Þ, and ð0:2875; 0:3005Þ, respectively, so that

J ð1Þ ¼ ð0:0; 0:3660Þ,

J ð2Þ ¼ ð0:2745; 0:3450Þ,

J ð3Þ ¼ ð0:2745; 0:2945Þ; and

J ð4Þ ¼ ð0:2875; 0:2945Þ.

Hence, at closure level q ¼ 4, the moment equations and the moment inequalities are satisfied if m2
belongs Jð4Þ ¼ ð0:2875; 0:2945Þ. The range J ð4Þ of possible values of m2 based on both moment equations
and inequalities is tighter than the interval I ð6Þ ¼ ð0:257; 0:3Þ based on a higher closure level but only
moment equations, that is, J ð4Þ � I ð6Þ. Since I ðqÞ is a decreasing sequence of intervals, Jð4Þ � I ð4Þ also
holds.

We note that J ð4Þ ¼ ð0:2875; 0:2945Þ is a tight interval that includes the exact value m2 ¼ 0:2896 of the second
moment of X ðtÞ. Any value in J ð4Þ ¼ ð0:2875; 0:2945Þ is a satisfactory approximation of m2 that yields accurate
values for the moments of order 4 and higher of X ðtÞ.

4.1.2. Case 2: a40
It was shown that the intervals I ðqÞ, q ¼ 1; 2; . . . , containing the exact value of m2 are equal to ð0;1Þ for all

closure levels q. Hence, the moment equations alone provide no information on the exact value of m2
irrespective of the closure level. However, moment equations augmented with moment inequalities can be used
to construct meaningful bounds on the exact value of m2. For example, values of m2 satisfying the first, second,
third, and fourth inequalities in Eq. (19) are contained in the intervals ð0:0; 1:3660Þ, ð0:6077; 4:3452Þ,
ð0:1277; 1:6950Þ, and ð0:4875;1Þ, respectively, so that

J ð1Þ ¼ ð0:0; 1:3660Þ,

J ð2Þ ¼ ð0:6077; 1:3660Þ,
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Jð3Þ ¼ ð0:6077; 1:3660Þ; and

Jð4Þ ¼ ð0:6077; 1:3660Þ.

We note that (1) the exact value m2 ¼ 0:8935 of the second moment of X ðtÞ is included in J ð4Þ, (2) increasing
the closure level to q ¼ 8 does not produce intervals tighter than J ð4Þ, so that the bounds on m2 ¼ 0:8935
remains relatively wide, and (3) J ð4Þ for a ¼ 1 is much wider than Jð4Þ for a ¼ �1.
5. Moment distributions

We have found from moment equations and moment inequalities that the feasible values of m2 belong to
intervals J ðqÞ depending on closure level q. The recurrence formula in Eq. (9) and moment inequalities in Eq.
(18) can be used to construct the intervals JðqÞ. The range of values of the moments of X ðtÞ of order 4 and
higher corresponding to J ðqÞ can be obtained from the recurrence formulas in Eqs. (9)–(11). For example, if
a ¼ �1, b ¼ �1, and s ¼ 1, the range J ðqÞ ¼ ð0:2875; 0:2945Þ of m2 at q ¼ 4 is mapped into the intervals
ð0:2055; 0:2125Þ, ð0:2188; 0:2388Þ, and ð0:2775; 0:3125Þ for m4, m6, and m8, respectively. These intervals include
the exact values ð0:2104; 0:2240; 0:3020Þ of ðm4;m6;m8Þ. If a ¼ 1, b ¼ �1, and s ¼ 1, J ðqÞ ¼ ð0:6077; 1:3660Þ at
q ¼ 4 is mapped into the intervals ð1:1077; 1:8660Þ, ð2:0193; 3:9150Þ, and ð4:7885; 8:5800Þ for m4, m6, and m8, and
these intervals include the exact values ð1:3935; 2:7377; 6:2173Þ of ðm4;m6;m8Þ.

If the uncertain value of m2 is assumed to be a random variable with distribution F2 of support JðqÞ, a
characterization of uncertain parameters used by Bayesian statisticians, the higher-order moments of X ðtÞ are
also random variables with distributions F2kðxÞ ¼ F2ððx� uÞ=vÞ, where u and v denote translation and scale
parameters. For example, the distributions of m4, m6, and m8 are, respectively,

F4ðxÞ ¼ F 2
x� b

a

� �
,

F6ðxÞ ¼ F 2
x� ab

a2 þ 3b

� �
,
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Fig. 3. Distributions of m2, m4, m6, and m8 in thin solid, thin dashed, heavy solid, and heavy dashed lines, respectively. Results are for a ¼ 1,

b ¼ �1, and s ¼ 1.
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F 8ðxÞ ¼ F2
x� a2b� 5b2b

a3 þ 8ab

� �
. (21)

The supports of these distributions coincide with the moment ranges established in the previous paragraph.
Fig. 3 shows the distributions of m2, m4, m6, and m8 with thin solid, thin dashed, heavy solid, and heavy dashed
lines for a ¼ 1, b ¼ �1, and s ¼ 1 under the assumption that m2 is uniformly distributed in J ð4Þ. The
distributions of m4, m6, and m8 are translated and scaled versions of the distribution of m2. The random
variables m2k, k ¼ 2; 3; . . . , have the representations m2k ¼ a2km2 þ b2k depending on some coefficients

ða2k; b2kÞ, so that the correlation coefficients rk;l ¼ a2ka2l=ða2
2ka2

2lÞ
1=2 between m2k and m2l , kal, are þ1 or �1,

that is, these random variables are positively or negatively perfectly correlated.
We also note that, if information beyond m2 2 J ðqÞ becomes available, the (noninformative) uniform density

with support J ðqÞ used for m2 can be updated within a Bayesian framework [9]. The additional information may
consist of a relatively short sample of X ðtÞ, that is sufficient to estimate m2 but not the higher-order moments
of X ðtÞ. Considerations of this type are beyond the objective of this paper.

6. Conclusions

Analytical expressions for the moments and the distributions of the state X of nonlinear dynamic systems
driven by Gaussian white noise are only available in simple cases of limited practical interest. Monte Carlo
simulation can be used to estimate properties of X provided that the required computation time is not
excessive. Properties of X can also be obtained by approximate methods, for example, equivalent
linearization, perturbation, stochastic averaging, closure methods. Our objective is to assess the performance
and the usefulness of closure methods since these methods have been and are applied extensively in nonlinear
random vibration.

Two simple dynamic systems with cubic nonlinearity and additive Gaussian white noise have been used to
evaluate closure methods. One of the systems has a single potential well while the other has two potential
wells. It was shown that the performance of closure methods is system dependent, in the sense that it is
determined by the structure of the moment equations rather than the particular closure technique used to close
these equations. This is a highly undesirable feature in applications. For the system with a single potential well,
any closure method provides accurate results if based on a sufficiently large closure level. For the system with
two potential wells, even order moments delivered by closure methods can be inaccurate or even negative. It
was also shown that bounds can be established on the moments of X by using both moment equations and
moment inequalities. The bounds are tight for the system with a single well and relatively wide for the system
with two potential wells.
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